by Jerry Askew of Askew Network Solutions

A

\Jalue /

2 Software Strategy with OSS

Of all the IT decisions firms make, those regarding software easily
have the greatest effect, positive or negative, on the organization.
While the portfolio of applications tends to be nearly identical among
firms (e.g., accounting, document management, word processor, etc.),

the particular software packages used to provide those services vary.
Perceived business needs dictate which particular pieces of software
are needed. The software, in turn, dictates the kinds of systems and
processes necessary to support it and, ultimately, the hardware,
personnel, time and space required.

Despite the fundamental importance of software, many business
executives do not have a good grasp on the nature of software, nor how
it fits into the overall IT ecosystem. Similarly, IT executives frequently
have only minimal visibility into the operational and administrative
process that the applications are intended to serve. These factors
combine to make it difficult indeed to make proper strategic decisions
regarding software.

As an alternative to traditional software procurement models, open
source software (0SS) offers a variety of advantages that help to
minimize or avoid the pitfalls inherent in the life cycle of an
application.

Overview of Open Source

As a concept, 0SS is relatively simple to describe. The source code of
the software is made available so that any interested party can inspect
it and modify it. In contrast, the source code to commercial software is
privately held by the company or entity that owns the software.
Recently, a hybrid known as visible-source has appeared where a
company allows the inspection of their source code but only under
contract, and modifications to the source code are prohibited.

While the concept of 0SS may be simple and straightforward, the
implications are not. 0SS is a radical departure from traditional
software procurement models and warrants careful analysis to
determine when and if it is the right choice.

Software in Business — A Comprehensive Look
Earlier in this article, | alluded to the foundational role software plays
in a business organization. The overall impact is far greater than many
people realize (or are willing to admit).

Circa 1990, desktop computers were making the transition from being a
luxury item to a necessity. Attitudes at the time were that computers
and software existed to serve current business processes. An executive
once told me that the company would not alter its processes to
accommodate computers — the computers must accommodate the
business. Adapting business processes in order to incorporate
technology was seen as the tail wagging the dog. What this executive
did not realize was that the dog was not a necessary part of the
business and would soon become obsolete . Only organizations that
embraced and incorporated technology could realize the full business
benefits therein.

The viewpoint that computers are somehow adjunct to business is still
surprisingly prevalent, even as most business processes have yielded to
automation out of sheer necessity. As a result, departments are staffed
and business is conducted around the capabilities and limitations of
the technology in use.

Traditional total cost of ownership (TCO) analysis fails to capture much
of the impact software has on business. In order to make a proper
strategic decision, it is necessary to contemplate all of the
organizational consequences of a given course of action. The following

Open Source Software :: 11



sections explore various areas where 0SS changes the rules of the
software game and offer practical insight on the resulting implications.

Solution Research

After a business need has been identified, most likely by a management
committee, the systems necessary to provide the solution must be
selected. During the research phase, entire classes of solutions will be
ruled out based primarily on their suitability to the task and a ballpark
TCO. These two factors are interrelated — a less than perfect solution
may be selected if the TCO is substantially lower.

The challenge is that both of these factors are difficult to quantify, and
the only data available in most cases is either provided by the vendor
(which is necessarily suspect) or from experiences at other firms (which
is a limited sampling, especially with newer technologies). This tends
to have a chilling effect on the implementation of newer technologies,
which otherwise might be of substantial benefit to the organization.

Due to the initial investment generally required for commercial solutions,
research must be complete and convincing. In addition to being very
time-consuming, this process can foster the premature formation of
opinions and may create an environment ripe with political risk. Initial

If the support offered by one vendor

does not suit your needs, you can
simply find another vendor who is
a better fit.

expenditures may require approval from a committee, presenting the
opportunity to rehash previously decided issues. This process is
imperfect but necessary.

0SS presents distinct advantages at this stage of the game. While TCO
is frequently on par with proprietary software, the initial acquisition cost
is well within discretionary spending limits. This allows a solution to be
brought in and tried at any scale with very little risk. Stakeholders are
able to form opinions based on direct experience. Potential issues can
be explored, demonstrated and discussed. Without the benefit of a
tangible system, issues will be largely speculative — as will the
solutions — making reconciliation difficult. Commercial software
vendors may offer demo or trial periods, but these are frequently too
limited or time-constrained to gain a full understanding of the system.

In the ideal 0SS scenario, committee involvement occurs after the
solution has been proven and demonstrated, at the point that larger
financial commitments are ready to be made. The reduction in
speculation and hand-wringing will save the organization much time
and frustration.

Acquisition Costs

The initial cost of enterprise-grade commercial software is high. This
presents a significant risk since the firm is financially committed long
before the software is known to provide an effective solution. The
solution to this dilemma is a carefully negotiated contract with specific

12 :: June 2006

performance requirements and guarantees. This is not a perfect solution,
however. Much of what is truly required will only be known after
implementation has begun. Further, performance requirements must
walk a fine line between being too subjective and being too restrictive.

It will come as no surprise that software pricing models are generally
structured in a way that maximizes vendor profitability. In many cases,
this prevents the apples-to-apples comparison between products. In
some cases, necessary features may be unbundled in a way that makes
the product seem less expensive. Only after you go into production will
you discover that you do indeed need that “Advanced XML Hyperinfo
Enhancement Module” that had earlier appeared unnecessary.

0SS places a completely different spin on software acquisition costs.
Instead of a large initial licensing fee followed by contracted
maintenance, your investment grows as your use and reliance on the
solution grows. Your commitment stays in sync with the utility and
benefit you are receiving. If at any point you discover that the system is
not meeting your needs, a large capital investment is not in the way of
turning around and heading in a different direction.

An added benefit of avoiding a large initial investment is that you can
likewise dispense with the complex contract. You may contract with a

vendor for implementation services, but the amount of money at risk is
in line with the services provided, not in an intangible and substantial
license fee.

There are very few surprises with 0SS software. Whatever it says it will
do, it will do. There are no additional modules to buy, and there is no
incentive to make the product seem to be more than it is. In fact, the
incentive is to be conservative in stating the capabilities. If an issue
exists — whether a bug or a limitation — it is likely to be well-known
and discussed in publicly available forums.

Support

Software support services are typically negotiated at the time
commercial software is purchased. Again, there are a number of risks,
the solution to which is — you guessed it — another contract. The
underlying risk is that the vendor is a single source provider of support.
Specific items that must be addressed include: support cost increases,
scope, response times and escalation, among others. If support is
inadequate, you have little recourse other than to tolerate it or migrate
to a competing product.

Support is an area where 0SS has much to offer. The more popular
packages, such as Linux and Apache, have big-name companies ready
to stand behind them. Nearly all 0SS packages have a community of
smaller support companies built around them. The advantage is you
have the flexibility to find the support vendor that works best for your
company. For instance, you may find a support vendor that has
expertise in the legal market or more specifically in a corporate legal
practice. If the support offered by one vendor does not suit your needs,
you can simply find another vendor who is a better fit. Since these
support vendors tend to be smaller companies, it is likely that you will
be treated as a very important customer — a status that would be
difficult to achieve with a large commercial software vendor.



Utility

Software is acquired in order to fulfill a particular business need.
Depending on the decisions made during the purchasing cycle, the
software will fill that need to a greater or lesser degree. As the new
system comes into heavier use, it is expected that some of the original
concepts about the system will need to be revised. Often, similar
issues have arisen with other users of the software, and the capability
to satisfy these needs is available within the package. In the case of
commercial software, this additional functionality may come at an
added cost. In some cases, the software may not be able to
accommodate the newly discovered need.

If a need develops that is not addressed by a piece of commercial
software that you own, you have a few options. You can request an
enhancement, negotiate for custom programming or implement a third-
party add-on. A potential pitfall here is that the vendor may have
business incentives that are in opposition to your needs. An example of
this would be a vendor that has product tie-ins or strategic alliances
with other vendors. If your need encompasses integration with a
competing adjunct system, the vendor may either refuse or charge a
disproportionate fee for the modifications.

The development of 0SS is driven purely by need and utility. It is not
uncommon to find edge-case functionality (/.e., features that are
important to a very small part of the overall community) in open source
projects. This occurs because any part of the community, no matter
how small, is able to contribute to the project. Because of this, most
needs have been anticipated.

If required functionality is missing from an 0SS solution, it can be
easily added. This is generally done by “sponsoring” the necessary
development. Sponsoring is simply contracting a programmer to add
the improvements that you need. The cost will be competitive since you
can contract any programmer to do the job (the lead author is generally
the first choice).

While an 0SS product may have preferential support for certain adjunct
products, it is never at the exclusion of other products. In fact, any
preference expressed in the project is simply a reflection of the needs of
the community, not the result of a vendor’s strategic business
relationships. Due to the importance of interoperability, 0SS systems
leverage and adhere to published industry standards to a far greater
degree than commercial software.

Opportunity Cost

An often overlooked part of the software picture is opportunity cost.
Opportunity cost is basically the amount of money the firm either fails
to realize or outright loses as a result of the software not doing exactly
what is needed. Some familiar manifestations of this would be:

Additional staffing requirements due to inadequate reporting or
process inefficiency

Improper (or complete lack of) profiling due to ease of use or
feature availability issues

Delayed or lost billing

Failure to obtain new business due to an inability to meet client
requirements or outclass a competing firm

Loss of existing business due to shortcomings in a conflicts system

While hard to quantify, opportunity cost can be of great significance to
a firm.

Many of the factors that contribute to the opportunity cost are given
attention during the process of selecting a software solution. The
challenge is that it is not possible to accurately predict people’s
behaviors or the developing needs of the firm or its clients. As a result,
the opportunity “gap” tends to widen over time.

With commercial software, this is simply par for the course. Regardless
of which vendor’s solution you use, there will be trade-offs, and the
solution will never be perfect. For this reason, larger companies
frequently turn to custom development, which, unfortunately, is not an
option for most law firms. 0SS offers an alternative in allowing what you
might call “targeted” custom development. In other words, if you later
find you need to make a small change to one aspect of the software, you
are free to do it. This kind of freedom does not exist with commercial
software and can become a significant, yet well-hidden liability.

Upgrades

Another aspect of support is upgrades to the software. Support
contracts will typically include patches, updates and new versions of
the software. Several years ago some vendors introduced the concept
of a “new product” into the mix. When supporting technologies
advanced, such as the next generation of Windows or the availability of
server-side SQL databases, these vendors repackaged their product
under a slightly modified name and expected their customers to buy the
product all over again.

Commercial software vendors are constantly searching for new and
improved sources of revenue. In the commodity software market,
vendors have begun to leverage their installed base in pursuit of new
revenue streams. It is increasingly common to find that software
upgrades contain subtle compatibility changes or unwanted bundling in
an attempt to influence end-user behaviors. While this is a highly
effective business strategy for the vendor, it generally does nothing to
help you meet your business objectives and may even be a hindrance.

Open Source software is free of these annoyances since the profit
motive lies with the supporting services, not with the software itself.
Furthermore, open source software cannot effectively be manipulated to
create benefit for one party at the expense of another. A fundamental
aspect of 0SS is that it cannot be controlled or manipulated by the
copyright holder or anyone else. If such control is attempted, the
disaffected portion of the community simply creates a new copy of the
software and continues development according to their own needs. This
process is known as a “fork” and can be thought of as the 0SS version
of competition.

Generally, a fork occurs as a result of differing views on the future
direction of the project. In some cases, a fork occurs because the
original project is no longer viable, and the fork will give new life to the
project. In other cases, both branches of the fork are viable but intended

Open Source Software :: 13



to service different needs or different industries. In any case, the result
will tend to increase your options as opposed to limiting them.

Maintainability

In selecting and implementing a software solution, the firm takes on a
significant commitment. The investment in implementation and
training often dwarfs the cost of the software itself. As people become
proficient with the software and new processes develop around it, the
costs of switching to another solution quickly become prohibitive.

A readily identifiable risk with commercial software is that the vendor
may cease to maintain the software. This situation can result from any
number of causes including bankruptcy, casualty, sale of the company or
simply a strategic change in direction. This risk is present regardless of
the size of the vendor. Consequently, purchase agreements for high-cost
and/or strategic software will often include provisions guaranteeing a
certain support lifetime as well as source code escrow.

0SS has distinct advantages in this area. Since the source code is
published, escrow arrangements are obviously unnecessary. More
importantly, multiple companies and individuals are invested in and
actively working with the code base at any given time. If any one
company or author, even the lead author, abandons a project, someone
else will likely take the author’s place. At the very least, there is a
community of developers who are familiar with the project and can
perform work at a moment’s notice. By contrast, it would take a
significant amount of time for an independent programmer to come up
to speed on proprietary source code that has been released from escrow.

14 :: June 2006

Ease of Migration

It has been said that “the only constant is change,” and this is
certainly true of business. At some point, the software that was
purchased will no longer meet the firm’s needs, and the time will come
to migrate to a new solution. This can occur with 0SS as well as with
commercial software, although the flexibility of 0SS offers a possible
option to migration. By sponsoring a modest set of improvements, you
may be able to mitigate any identified shortcomings and save your firm
the significant expense of migration to another solution.

There are times, however, when migration is unavoidable even with 0SS.
Typically, the reasons for this migration are shared with other members
of the project community. To that extent, tools and expertise will be
available to help with the migration. In some cases, the project itself
may include tools for migrating to other systems. With 0SS, there is no
incentive to keep you captive to a solution that doesn't fit your needs.

In addition, the focus on the use of standards will ease migration
among 0SS solutions.

By contrast, commercial software vendors are unlikely to offer any help
in migrating away from their product. In many cases, the system will
be designed in a way that discourages migration. Making it hard to
leave can be an effective retention strategy, and often requires less
investment than making you want to stay.

The Right Decision

The 0SS model offers a number of advantages over commercial
software at various stages throughout the solution life cycle. Some of
these advantages are difficult to quantify, but they directly address
organizationally significant issues that typically arise in high-risk and
high-cost projects. Depending on the application, 0SS may be an
available option. While we have discussed the general differentiators of
0SS and commercial software, the crux of your decision will lie in the
specific capabilities of each solution. In those cases where 0SS
solutions meet your requirements, understanding the rules of the game
will help in making the right decision for your firm.

This article was first published in ILTA's June, 2006 white paper titled “Open Source
Software — The Door Is Open” and is reprinted here with permission. For more
information about ILTA, visit their website at www.iltanet.org.



